Bilgi Bankamız 62 Kategoride, 9052 Makale ve Konu Anlatımı içermektedir. Son Güncelleme: 27.01.2020 06:06

[Matematik] Büyük Sayılar Yasası | Bir Rassal Değişkenin Uzun Vadeli Kararlılığını Tanımlayan Bir Olasılık Teoremi


İçerik Hakkında Bilgi

  • Bu içerik 17.08.2009 tarihinde Hale tarafından, Matematik ve Geometri Konu Anlatımları bölümünde paylaşılmıştır ve 738 kez okunmuştur.
    Kaynak: Kadim Dostlar ™ Forum

İçerik ve Kategori Araçları


Büyük Sayılar Yasası

Büyük sayılar yasası, bir rassal değişkenin uzun-vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.


Büyük sayılar yasası bir zarın peÅŸ peÅŸe atılması ile örneklenebilir. Öyle ki, multinom dağılımı sonucunda 1, 2, 3, 4, 5 ve 6 sayılarının gelme olasılığı eÅŸittir. Bu sonuçların nüfus ortalaması (ya da “beklenen deÄŸer”i),

(1 + 2 + 3 + 4 + 5 + 6) / 6 = 3,5

olur. SaÄŸdaki grafik bir zarın atılması deneyinin sonuçlarını göstermektedir. Bu deneyde görürüz ki, ilk baÅŸta zar atışlarının ortalaması çılgınca dalgalanmaktadır. Büyük sayılar yasası tarafından öngörüldüğü üzere, gözlem sayısı arttıkça, ortalama, beklenen deÄŸerin yani 3,5’in etrafında dengelenmektedir.


Bir baÅŸka örnek madeni para atılması olabilir. Bir madeni paranın peÅŸ peÅŸe atılması durumunda, yazıların (ya da turaların) sıklığı, gözlem sayısı arttıkça, %50’e gittikçe yaklaÅŸacaktır. Fakat yazı ve tura sayıları arasındaki mutlak fark atış sayısı arttıkça açılacaktır. ÖrneÄŸin, 1000 atıştan sonra 520 ve 10000 atıştan sonra 5096 yazı görebiliriz. Ortalama, 52’den, 5096’ya gittiÄŸi, gerçek %50’ye yaklaÅŸtığı halde, ortalamadan toplam fark 20’den 96’ya yükselmiÅŸtir.
Büyük sayılar yasası önemlidir, çünkü rastgele olaylardan kararlı uzun-vadeli sonuçlar alınacağını “garanti eder”.

ÖrneÄŸin, bir gazino tek bir Amerikan Rulet dönüşünden para kaybedebilir, ama 1000’lerce dönüşe oynanan paranın tamamının %5,3’üne yakınını neredeyse kesin olarak kazanacaktır. Bir oyuncunun herhangi bir kazancı, sonuçta oyunun baÅŸlıca parametreleri tarafından soÄŸurulacaktır. Büyük sayılar yasasının büyük sayıda gözlem yapıldığı zaman etkili olacağı unutulmamalıdır. Küçük miktardaki gözlem için sonucun beklenen deÄŸere yaklaÅŸacağını veya bir sapmanın hemen bir baÅŸkasıyla “dengeleneceÄŸini” beklemek için bir neden yoktur.

Geçmiş

Büyük sayılar yasası ilk olarak Jacob Bernoulli tarafından tanımlanmıştır. 1713’te “Ars Conjectandi” (Varsayımın Sanatı) adlı eserinde yayınlanan yeterli derecede titiz bir kanıtı geliÅŸtirebilmesi 20 yılına mal olmuÅŸtur. Bunu kendisinin “Altın Teoremi” olarak adlandırmış, fakat yaygın olarak “Bernoulli’nin Kuramı” olarak bilinmektedir(Bernoulli kuramı fizik kuramıyla karıştırılmaması gerekir). 1835’te S. D. Poisson, bu yasayı “La loi des grands nombres” (Büyük sayılar yasası) olarak adlandırmıştır. Ä°ki isimde de anılagelen bu yasa için “Büyük sayılar yasası” terimi daha fazla kullanılmaktadır.

Bernoulli ve Poisson kendi çalışmalarını yayımladıktan sonra, Chebyshev, Markov, Borel, Cantelli ve Kolmogorov’un da aralarında yer aldığı diÄŸer matematikçiler de yasanın geliÅŸmesine katkıda bulunmuÅŸlardır. Bu çalışmalar yasanın iki belirgin biçiminin ortaya konulmasında etkili olmuÅŸtur. Bu biçimlerden biri “zayıf” yasa, diÄŸeri de “güçlü” yasa olarak adlandırılır. Bu biçimler farklı yasaları tanımlamamaktadır, sadece ölçülmüş olasılığın, gerçek olasılığa yakınsamasını tanımlamanın farklı yollarıdır ve büyük olan küçüğü içerir.

Biçimler

Yasanın her iki ifadesi de örneklem ortalamasının


beklenen değere yakınsadığını

ifade eder.

Burada X1, X2, … deÄŸerleri

E(X1)=E(X2) = … = µ < ∞

beklenen değerlerine sahip, bağımsız ve eş aralıklı (i.i.d.) sonsuz rassal değişken sırasını simgeler.

Bir sonlu varyans

Var(X1) = Var(X2) = … = σ2 < ∞

varsayımına ihtiyaç yoktur. Büyük veya sonsuz varyans yakınsamayı daha yavaş kılacaktır, fakat büyük sayılar yasası hala geçerlidir. Kanıtları daha kolay ve kısa tutmak için bu varsayım genellikle yapılır.

Güçlü ve zayıf ifadeler arasındaki fark, hangi tür yakınsamadan bahsettiğimizdir.

1. Zayıf Yasa

Büyük sayıların zayıf yasası belirtmektedir ki, örneklem ortalamasının olasılıkta yakınsaması
beklenen değere doğru gerçekleşir.

Bu, herhangi bir pozitif ε sayısı için

Olasılıkta yakınsamayı yorumlarsak, zayıf yasa der ki, bir çok gözlemin ortalaması giderek ne kadar küçük olduğuna bakılmaksızın, verilen herhangi bir sıfırdan farklı sınır dahilinde olmak üzere, ortalamaya yakın olacaktır.

Bu ifadeye zayıf yasa denir, çünkü olasılıkta yakınsama, rassal değişkenlerin zayıf yakınsamasıdır.

Zayıf büyük sayılar yasasının bir sonucu asimptotik eşdağılım özelliğidir.

2. Güçlü Yasa

Büyük sayıların güçlü yasası der ki, örneklem ortalamasının olasılıkta yakınsaması neredeyse kesin olarak beklenen değere doğru gerçekleşir.

Bu demektir ki,

Kanıt, zayıf yasadan daha karmaşıktır. Bu yasa bir rassal deÄŸiÅŸkenin beklenen deÄŸerini “art arda örneklemin uzun-vadeli ortalaması” olan sezgisel yorumunu doÄŸrular.

Bu ifade güçlü yasa olarak adlandırılmıştır, çünkü yakınsama, rassal değişkenlerin güçlü yakınsamasıdır. Güçlü yasa, zayıfı kapsar.

Büyük sayıların güçlü yasası, ergodik teorem’in özel durumu olarak görülebilir.

(Visited 3 times, 1 visits today)


Kaynak: Kadim Dostlar ™ Forum

Bu içerik 17.08.2009 tarihinde Hale tarafından, Matematik ve Geometri Konu Anlatımları bölümünde paylaşılmıştır ve 738 kez okunmuştur. Bu içeriğin devamında incelemek isteyebileceğiniz 0 adet mesaj daha bulunmaktadır.

[Matematik] Büyük Sayılar Yasası | Bir Rassal Değişkenin Uzun Vadeli Kararlılığını Tanımlayan Bir Olasılık Teoremi orjinal içeriğine ulaşmak için tıklayın ...

Önceki MakaleMessenger'ın Gözüyle Dünya Ve Ay | Günün Gökbilim Görüntüsü - 1 - 30 Eylül 2010 Sonraki MakaleAy Tutulması Nedir? | Ay Tutulması Nasıl OluÅŸur? 28 AÄŸustos 2007 Ay Tutulması'nın Hareketli Görüntüsü

Bu Makaleyle İlgili Fikirlerinizi ve Görüşlerinizi Diğer Ziyaretçilerle Paylaşabilirsiniz